
Tokenized SAEs: Disentangling SAE Reconstructions

Thomas Dooms * 1 Daniel Wilhelm * 1

Abstract
Sparse auto-encoders (SAEs) have become a
prevalent tool for interpreting language models’
inner workings. However, it is unknown how
tightly SAE features correspond to computation-
ally important directions in the model. This work
empirically shows that many RES-JB SAE fea-
tures predominantly correspond to simple input
statistics. We hypothesize this is caused by a large
class imbalance in training data combined with
a lack of complex error signals. To reduce this
behavior, we propose a method that disentangles
token reconstruction from feature reconstruction.
This improvement is achieved by introducing a
per-token bias, which provides an enhanced base-
line for interesting reconstruction. As a result, sig-
nificantly more interesting features and improved
reconstruction in sparse regimes are learned.

1. Introduction
The holy grail of mechanistic interpretability research is the
ability to decompose a network into a semantically meaning-
ful set of variables and algorithms. SAEs have emerged as a
promising method to extract interpretable context (Cunning-
ham et al., 2023; Kissane et al., 2024; Dunefsky et al., 2024).
However, the importance of SAE features to model compu-
tation is still unknown. This paper specifically studies the
importance of local context on the variety of learned fea-
tures. This is enhanced by an SAE training token frequency
imbalance resulting in bias toward local context.

We find that many features in medium-sized SAEs such as
RES-JB (Lin & Bloom, 2024) are affected by this imbal-
ance. This causes them largely to reconstruct a direction
biased toward the direction of the most prevalent training
data unigrams. Empirically, we estimate that between 35%
and 45% of the features reconstruct common unigrams and
almost 70% reconstruct common bigrams. We hypothesize
these features then moreso reflect training token statistics
than interesting internal model behavior. We attribute this

*Equal contribution 1Independent. Correspondence to: Thomas
Dooms <doomsthomas@gmail.com>.

phenomenon to the following two observations:

• Local context is a strong approximation for latent rep-
resentations, even in deeper layers.

• There is a prominent class imbalance in the training
data of SAEs. Certain local combinations will appear
much more frequently than specific global interactions.

Given both their frequency and strength in the representa-
tion, these local contexts occupy the majority of the features
an SAE uses to minimize its reconstruction error. We show
this to hold for all kinds of common n-grams. Furthermore,
we hypothesize this to be the cause for a range of patholog-
ical behaviors exhibited by SAEs, such as the inability to
generalize out-of-distribution in certain contexts (Templeton
et al., 2024; Gurnee, 2024).

Fortunately, these insights can be leveraged toward a so-
lution; we propose a means to disentangle these ”uninter-
esting” feature reconstruction tokens from the interesting
features. This is accomplished by extending the SAE with
a per-token bias, allowing the SAE to represent a ”base”
reconstruction for each token. This leaves room for more se-
mantically useful features. Furthermore, the proposed bias
lookup table is efficient, resulting in SAEs becoming less
compute-intensive to train. Specifically, our contributions
are:

• We identify and characterize the issue of SAEs learning
token reconstruction features due to the input distribu-
tion and formulate why this is the case.

• We propose a technique to mitigate this behavior by
separating token reconstruction from context recon-
struction. We name this approach Tokenized SAEs.

2. Background
2.1. Notation.

For interpretability, it is important to relate a sequence of N
input tokens x ∈ TN to activations at some location p. This
mapping exists as a function Ap.

We define an n-gram as [t0, t1, t2, . . . , tn] ∈ Tn+1. In
this paper, we assume t0 = BOS ∈ T, the beginning-of-
sequence token.

1

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 1. Particular n-grams are seen exponentially more often
than others. Many combinations occur millions of times more than
an arbitrary n-gram.

2.2. Imbalance.

We will examine sparse auto-encoders at some location p.
These map each row vector of Ap(x) to itself, reconstructing
it. The sparsity of the hidden layer is minimized, leading to
seemingly interpretable features.

During training, short n-grams are exponentially over-
represented due to an imbalanced training distribution. This
biases the SAE toward reconstructing these short n-gram
inputs.

This occurs because the SAE is trained to reconstruct each
row vector of Ap(x). Due to attention, each is a function
only of the prior tokens, i.e. for row i, Ap(x)i = Ap(x≤i)i.
For example, for each training prompt the SAE is provided
training examples Ap(BOS) and Ap(BOS, t), where t fol-
lows the distribution of training set tokens.

For row vector i, there are at most |T|i possible activations.
However, in practice the degree of over-representation can
be measured directly for a given training set. Assuming
each training sequence begins at a random token, the n-
gram frequency distribution follows the dataset’s n-token
frequency distribution. We show many n-grams are more
than a million times more likely than baseline (Figure 1).

This results in an effect similar to ”imbalanced regression”1,
where the target space distribution is sampled unevenly dur-
ing training (Yang et al., 2021; Stocksieker et al., 2024).
Each row vector follows an distribution based on its in-
dex, causing the SAE to become biased toward the highest-
weighted regions of space (here the most common small
n-gram activations). Such a class weighting causes a gen-
eral MSE-trained regressor to underestimate rare labels (Ren
et al., 2022).

We show experimentally this causes higher reconstruction
loss for less common unigrams, since they must ”overcome”
the biases (Figure 2).

1The terminology ”imbalanced” accurately describes its impli-
cations, although it may best be described as a weighted class.

Figure 2. With increasing OpenWebText token frequency, the re-
construction MSE of unigrams in layers 5, 8, and 11 of the RES-JB
SAE decreases. This indicates the SAE effectively memorizes the
most common tokens. This effect does not occur with the most
common bigrams, likely because they are composed of the most
common unigrams and/or occupy unigram subspaces.

Figure 3. To memorize unigrams exactly and sparsely, the SAE
represents each using a small subset of feature neurons that fire in
response to the unigram. Due to the incorporation of prior token
information, SAEs in later layers often also strongly memorize
bigrams.

3. Sparse Auto-Encoders
The motivation for training SAEs is often presented as fea-
ture discovery. This is achieved by reconstructing the hidden
representations through a sparse hidden basis, often called
features. We show that SAEs memorize and organize them-
selves around the most common input n-grams, contributing
to the observed correlation between them (Figure 4).

3.1. Memorization.

Suppose the most common n-gram inputs cause a training
imbalance. Then we would expect to see (and observe) that
with larger n-gram frequency, the reconstruction MSE de-
creases (Figure 2) and fewer features activate (Figure 3). In
later layers, attention has likely consolidated information
from other tokens, making the most common representa-
tions involve prior tokens. For example, many common
words require multiple tokens to represent. We have ob-
served evidence for this by noting that unigrams are most
commonly activated in early layers and bigrams in later
layers.

3.2. Token Reconstruction Features.

Suppose some SAE is represented by a set of features F.
Based on the prior experimental results and imbalance the-

2

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 4. Illustrating experimental results, an individual feature
neuron is activated when one of its associated n-grams is present.
The most common tokens will occupy a full feature while less
common tokens will share a feature. To maximize reconstruction,
this sharing occurs between semantically similar tokens.

Figure 5. Measuring cosine similarity of hidden representations
and a patched version which only includes the last n tokens in
GPT-2 small. Trigrams are generally an adequate approximation
across the network.

ory, we hypothesize that each common n-gram x maps to a
subset of F which Ap(x) activates. The set of increasingly
most common n-grams approaches a cover of F, with the
exclusion of dead features. (Figure 4)

An SAE feature activates when a common activation pattern
appears in x, corresponding to some aspect of an n-gram.
We show this experimentally by predicting which input
tokens will activate a given feature. In RES-JB layer 8, of
the 76% of features activated by a unigram, 39% matched
the top unigram activation and 66% matched at least one.
The 24% of features not activated by a unigram illustrate:

1. In later layers, some common SAE inputs may result
from non-local information that more likely occurs in
longer sequences. Experimental evidence shows that a
minority of layer 8 GPT-2 features do not respond to
any of 212K most-common (n ≤ 6)-grams. A quali-
tative characterization of these features reveals these
features exhibit more interesting semantic behavior.

2. This method operates under the assumption that some
n tokens prior to row vector i are sufficient to mostly
describe the SAE inputs, i.e. Ap(x)i ≈ Ap(xi−n)i.
We show this to generally be the case in Figure 5, even
in complex models and later layers (Figure 6). See
Appendix C for additional discussion.

Figure 6. Tokenized SAEs assume residual activations are similar
to those of individual unigrams, specifically the final input token.
Toward this, we investigate whether unigram residuals are good
approximations for 128-token residuals. We compare 38K 128-
token residuals to all unigram residuals, recording the mean cosine
similarity of (a) the most similar unigram, (b) the final-token
unigram, and (c) the first-token unigram (an effectively random
control). We find (a) residuals have very high cosine similarity to
unigram residuals across all models and layers, and (b) the final
token unigram is often nearly-closest.

4. Tokenized SAEs
To resolve the abovementioned issues, we propose a new
method that separates token reconstruction features from
the dictionary. This is achieved by adding a separate path
to the SAE, which is only concerned with providing a base
reconstruction of tokens. Concretely, we add a lookup table
which acts as a per-token bias (Equation 2).

f(at) =ReLU(Wenc(at − bdec) + benc) (1)
ât =Wdecf(at) + bdec +Wlookup(t) (2)

This lookup table has no impact on the encoding thus com-
puting feature activations requires no change in setup. How-
ever, token information is necessary for the reconstruction.
We provide further details in Appendix A.

4.1. Training

As with the encoder, sensibly initializing the lookup table
leads to large improvements in learning speed and final
convergence. We do so by using the activations on the
target point by only sampling each token without context,
or formulaically; Wlookup(t) = Ap(BOS, t)1.

Since the lookup table is essentially a hyper-sparse set of
features, it is necessary to increase its learning rate to yield
better reconstructions. A sensible approach is to multiply
the learning rate by the approximate L0 of the SAE, this
theoretically results in equal gradient updates. However,
empirical results indicate using even higher learning rates is
beneficial. More training-specific information can be found
in Appendix A.

3

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 7. A Pareto frontier comparison of various SAEs on layer
8 of GPT-2 using an expansion factor of 16. The cross-entropy
added and normalized MSE compared to the L0 norm are shown.
All SAEs were trained on about 300M tokens until (close to)
convergence. Due to human error, the ’vanilla + lookup’ did not
learn its lookup table.

4.2. Reconstruction

The experiments in this section are all performed on layer
8 of GPT-2 small. This is sufficiently deep in the model
that we would expect complex behavior to have arisen. Fur-
thermore, a breadth of public pre-trained SAEs can be used
for comparison. We use the added cross-entropy (Equa-
tion 3) to measure the impact on the model prediction and
normalized MSE (Equation 4) to measure reconstruction.

CEadded(x) =
CEpatched(x)− CEclean(x)

CEclean(x)
(3)

NMSE(x) =
||x− SAE(x)||2

||x||2
(4)

Figure 7 shows a large-scale comparison of Pareto frontiers
for various architectures. We benchmark vanilla SAEs (Cun-
ningham et al., 2023), gated SAEs (Rajamanoharan et al.,
2024) and Top-k SAEs (Gao et al., 2024). The vanilla and
the gated SAEs are trained with decoder sparsity loss from
Conerly et al. (2024). Beyond this, no additional training
techniques (resampling, ghost gradients, ...) were used.

This indicates Tokenized SAEs outperform their non-
tokenized counterparts by a significant margin. They
achieve the same reconstruction while being about 25%
sparser. Furthermore, in hyper-sparse regimes, they consis-
tently yield good reconstructions and follow a clean linear
pattern in contrast while their counterparts consistently de-
teriorate.

Figure 8. Comparison of a top-k SAE and its tokenized variant on
layers 5 through 11 on GPT-2. All SAEs were trained with an
expansion factor of 16, k = 30 and about 250M tokens were used.

4.3. Suite

To demonstrate the generality of the approach, we train two
suites of SAEs on layers 5 through 11 for GPT-2. Both
use top-k as an activation function, one has a lookup table
(tokenized) and one doesn’t (top-k). This shows that the
lookup table consistently enhances reconstructions, with no
visible degradation in deeper layers (one could even argue
the opposite).

One aspect not shown in the plots but still wish to highlight
is the improved training speed with the lookup table. We
consider the final value of baseline NMSE and CE added,
tokenized SAEs reach that value 6-10x faster across all
layers of GPT-2. Training a competitive SAE (according to
these metrics) can be achieved in mere minutes on consumer
hardware.

4.4. Scaling

One salient concern for this approach is the impact of deeper
and more complex models on the utility of the token lookup
table. To this end, we perform preliminary experiments
on Pythia 1.4B for layers 12, 16 and 20 using the newly
proposed top-k. Results indicate that tokenized SAEs still
outperform their baselines. This leads us to believe token
subspaces may be more salient than commonly believed.

12 16 20
Top-k 0.076 0.081 0.155

Tokenized 0.045 0.055 0.121

Table 2. CE added across 3 layers of Pythia-1.4B using top-k SAEs
with k = 50. Due to computation constraints, the SAEs are
undertrained, using only 70M tokens. Qualitatively, the training
progression showed no signs of the baseline ’catching up’. The
NMSE (not shown) exhibits a similar improvement.

4

Tokenized SAEs: Disentangling SAE Reconstructions

RES-JB Vanilla Vanilla* Top-k Top-k*
Consistency 4.1 3.6 3.4 3.4 4.2
Complexity 2.5 1.1 2.9 1.7 3.0

Table 1. We manually score 20 features from multiple SAEs (tokenized denoted by an asterisk) and note their mean complexity and
consistency according to Cunningham & Connerly (2024). In short, the complexity score ranges from 1 (unigrams) to 5 (deep semantics).
The consistency ranges from 1 (no discernable pattern) to 5 (no deviations). Given the limited sample size, these results should be
interpreted cautiously; they provide preliminary indications rather than definitive evidence. Scoring features manually is time-consuming.

Figure 9. Approximate categorization of features by the number of
tokens they activate on (above a threshold of 5). Experiments are
performed on JB’s suite for GPT-2 layer 8. In smaller SAEs, there
is no bandwidth to represent individual or small sets of tokens. In
medium-sized SAEs, we see features representing small sets of
tokens. As size increases, it starts representing specific tokens.

5. Feature Comparison
5.1. Quantitative

We quantify the number of uninteresting features by sam-
pling each possible unigram (pre-pended with BOS) and
measuring the number of features that activate strongly for
it. Features that strongly correspond to very few tokens are
highly likely to be feature reconstruction tokens. We display
which distribution they follow in Figure 9.

We perform the same experiment on the Tokenized SAEs
from Figure 7. We find that the number of features that
activate on any single unigram is below 5% for all of them.
Appendix C contains more in-depth analyses regarding the
differences.

5.2. Qualitative

We performed a blind study on five layer 8 GPT-2 SAEs.
A top-k and vanilla SAE, with their tokenized counterpart
and finally RES-JB (Lin & Bloom, 2024) as a baseline.
The results are shown in Table 1 and suggest that our SAE
features are about equally consistent, but their complexity
is noticeably higher. Appendix B includes a list of cherry-
picked features to corroborate these subjective findings. In
summary, we find that features generated by Tokenized
SAEs tend to be more semantically meaningful and contain
fewer uninteresting features.

6. Future Work
Tokenized SAEs have a wide possible range of extensions.
One obvious candidate is to incorporate n-gram statistics,
instead of simply unigrams. We believe this to be mostly
an engineering challenge; it requires efficiently making a
sparse, multi-token lookup table. Furthermore, while this
paper only considers the tokens as a sparse basis, one could
consider a previous SAE as a basis. This would incentivize
structuring around already-existing features, likely improv-
ing circuit analysis.

Additionally, a more thorough study into the quality of
Tokenized SAE features is still to be performed. This should
be done on both the dictionary and the lookup table. The
former is related to the incorporated non-local context and
the latter is related to the token reconstruction. Exactly
characterizing this token reconstruction similarity in latent
representations is undoubtedly useful.

7. Acknowledgements
This project originated as a MATS sprint. We thank Jacob
Dunefsky and Neel Nanda for their insightful discussions
and guidance. We also thank Michael Pearce for coining
the project’s name. This research received funding from
the Flemish Government under the ”Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.

8. Contributions
Thomas conceived the proposed approach, trained the SAEs,
and analysed the TSAEs and their differences. Daniel no-
ticed and researched the training imbalance and analysed
the TSAEs. The paper was written in tandem.

References
Conerly, T., Templeton, A., Bricken, T., Maruc,

J., and Henighan, T. Circuits updates - april
2024. Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/
2024/april-update/index.html.

Cunningham, H. and Connerly, T. Circuits updates
- june 2024. Transformer Circuits Thread, 2024.

5

https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html

Tokenized SAEs: Disentangling SAE Reconstructions

URL https://transformer-circuits.pub/
2024/june-update/index.html.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models., 2023.

Dunefsky, J., Chlenski, P., and Nanda, N. Transcoders
enable fine-grained interpretable circuit analysis
for language models. Alignment Forum, 2024.
URL https://www.lesswrong.com/posts/
YmkjnWtZGLbHRbzrP.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scaling
and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Gurnee, W. Sae reconstruction errors are (empir-
ically) pathological. Alignment Forum, 2024.
URL https://www.lesswrong.com/posts/
rZPiuFxESMxCDHe4B.

Kissane, C., Krzyzanowski, R., Conmy, A., and
Nanda, N. Sparse autoencoders work on atten-
tion layer outputs. Alignment Forum, 2024. URL
https://www.alignmentforum.org/posts/
DtdzGwFh9dCfsekZZ.

Lin, J. and Bloom, J. Announcing Neuronpedia: Plat-
form for accelerating research into Sparse Autoencoders.
March 2024.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders, 2024.

Ren, J., Zhang, M., Yu, C., and Liu, Z. Balanced mse
for imbalanced visual regression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Stocksieker, S., Pommeret, D., and Charpentier, A. Board-
ing for iss: Imbalanced self-supervised: Discovery of a
scaled autoencoder for mixed tabular datasets, 2024.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J.,
Bricken, T., Chen, B., Pearce, A., Citro, C., Ameisen,
E., Jones, A., Cunningham, H., Turner, N. L., Mc-
Dougall, C., MacDiarmid, M., Freeman, D., Sumers,
T., Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Yang, Y., Zha, K., Chen, Y.-C., Wang, H., and Katabi, D.
Delving into deep imbalanced regression. In Proceed-
ings of the 38th International Conference on Machine
Learning (ICML 2021), 2021.

6

https://transformer-circuits.pub/2024/june-update/index.html
https://transformer-circuits.pub/2024/june-update/index.html
https://www.lesswrong.com/posts/YmkjnWtZGLbHRbzrP
https://www.lesswrong.com/posts/YmkjnWtZGLbHRbzrP
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://www.lesswrong.com/posts/rZPiuFxESMxCDHe4B
https://www.lesswrong.com/posts/rZPiuFxESMxCDHe4B
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Tokenized SAEs: Disentangling SAE Reconstructions

A. Training Setup
A.1. General

The setup is intentionally kept as simple as possible to avoid confounding factors. Specifically, no resampling or ghost
gradients are used. All SAEs are trained on a subset of C4 tokens using a context length of 256. Tokens are collected in a
buffer of size 128K and then sampled in batches of 4096 to train the SAE. We use the Adam optimizer with a learning rate
of 1e−4 and a cosine annealing learning schedule. This base training setup is consistent across all experiments.

For all GPT-2 models, we use an expansion factor of 16 (12288 features). For the Pythia-1.4B, we use an expansion factor
of 8 (16382 features).

A.2. Initialization

We initialize Wenc with the response of the Wdec for all SAEs. Further, as stated in subsection 4.1, we initialize the
lookup table to the activations for that token without tokens. Both these initialization procedures attempt to attain the
same goal; approximate an identity. We therefore ”balance” the lookup Wlookup(tok) = αAp(BOS, tok) and the encoder
Wenc = (1−α)WT

dec using a hyperparameter that sums to one. While all values outperform non-tokenized SAEs, we found
α = 0.5 to work well across all experiments.

Interestingly, we can approximate α during training using Equation 5 where Woriginal is the lookup at the start of training.
This reveals how much the SAE naturally steers towards learning balancing the lookup and SAE. We find that the middle
layers of GPT-2 converge towards 0.6 and the later layers towards 0.5. The middle layers of Pythia-1.4B tens to 0.45 and the
later ones to 0.4.

α̂ =
1

n

n∑
i

Woriginal ·Wlookup

||Woriginal||22
(5)

A.3. Learning Rate

In subsection 4.1, we note that increasing the learning rate of the lookup table improves the reconstructions. The reasoning
is that, due to the difference in sparsity, each entry in the lookup table is updated much less than the features in the SAE. We
empirically find that increasing the learning rate to 0.01 (up to 100x higher than the global learning rate) yields good results.
We attribute this to the lookup table being more stable to train and again to token frequency imbalance. One could also
dynamically change the learning rate of each lookup entry based on this frequency, we did not try this.

A.4. Memory and Compute Overhead

Adding a lookup table does not impact training or inference time significantly since it is an extremely efficient operation.
We noticed a 3-5% increase in training time by introducing the table. In terms of memory overhead, the lookup table has a
larger impact. For common SAE sizes, the memory requirements double. We do not think this to be an issue since SAEs are
generally not memory-heavy; a whole GPT-2 suite would consume about 3GB of memory. If this is an issue, one could
consider using a truncated lookup table, containing only the n most common tokens.

B. Cherry-Picked Features
Potential Categories of First 25 Features (top-k TSAE, layer 8):

• Overall thematic: 16 (movie storylines)

• Part of a word: 10 (second token), 12 (second token), 17 (single letter in a Polish word), 19 (”i/fi/ani”)

• Thematic short n-grams: 15 (” particular/Specific”), 23 (defense-related), 28 (”birth/death”)

• N-grams requiring nearby period/newline/comma: 7 (”[punctuation] If”), 18 (”U/u”), 22 (”is/be”)

• Bigrams: 2 (”site/venue”), 6 (”’s”), 8 (”shown that”/”found that”/”revealed that”), 14 ([punctuation] ”A/An/a/ The”)

7

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 10. An end of sentence feature, boosting ”.”, ”,”, and ”and” tokens.

Figure 11. A health hazard feature.

8

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 12. A direct object feature.

• Categoric bigrams: 13 ([NUM] ”feet/foot/meters/degrees”)

• Skipgrams: 1 (”in the [TOK]”), 21 (”to [TOK] and”)

• Locally Inductive: 11 (requires a sequence of punctuation/short first names)

• Globally Inductive: 24 (activates only when final token earlier in the prompt)

• Less Than 10 Activation (implies low encoder similarity with input): 0, 4, 5, 9

• Unknown: 3, 20

Specific Interesting Features (top-k TSAE, layer 8):

• 36: ”.\n[NUM].[NUM]”

• 40: Colon in the hour/minute ”[1-12]:”

• 1200: ends in ”([1-2 letters]”

• 1662: ”out of [NUM]”/”[NUM] by [NUM]”/”[NUM] of [NUM]”/”Rated [NUM]”/”[NUM] in [NUM]”

• 1635: credit/banks (bigrams/trigrams)

• 2167: ”Series/Class/Size/Stage/District/Year” [number/roman numerals/numeric text]

• 2308: punctuation/common tokens immediately following other punctuation

• 3527: [currency][number][optional comma][optional number].

• 3673: ” board”/” Board”/” Commission”/” Council”

• 5088: full names of famous people, particularly politicians

• 5552: ends in ”[proper noun(s)]([uppercase 1-2 letters][uppercase 1-2 letters]”

• 6085: ends in ”([NUM])”

• 6913: Comma inside parentheses

Many features were found to activate on exact copies of the final n-gram. It is unknown if this is a possibility for all features.

9

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 13. Due to how SAE activations are computed, feature activation strength is correlated with input vector cosine similarity with
W enc. Low-activating features likely are not detecting signal in the input. (Figure shows top-k tokenized layer 8.)

Figure 14. We initialize W enc as the transpose of W dec. This resulted in an easy post-facto test for dead features – simply comparing
the cosine similarity of the encoder and decoder. As shown, the peak at 0.9 exactly corresponds to features which never activate more
highly than 3 (in our top-k tokenized SAE layer 8).

C. Additional Analysis
C.1. Low feature activations imply low similarity with input vector

It is important to ask whether an activated feature is detecting something of significance or not. One method to detect this is
by the strength of the activation. The mechanics of the encoder computation indicate that larger feature activations will
correlate with larger cosine similarity between the input vector and W enc (Figure 13). Hence, a small-magnitude activation
likely indicates the feature has not detected a signal.

Due to this, a minimum activation threshold is advisable when evaluating features.

C.2. Recognizing dead features by encoder/decoder similarity

Because we pre-initialize each feature with W enc and W dec transposed, an interesting finding is that dead features
correspond nearly exactly to features with high cosine similarity between each feature’s encoder and decoder. This can be
used post-facto to detect dead features:

Dead features are evidenced by high cosine similarity between W enc and W dec, since they were pre-initialized as
transposes (Figure 14). Here, we show these groups correspond nearly exactly to low test set activations (in gpt2-small layer
5 TSAE).

We examined the high-similarity group using four metrics, concluding they are likely not valid features:

• Nearly all are completely dissimilar to RES-JB features (<0.2 max cosine similarity).

• Nearly all have a top activation <3 (activations are normally distributed about 0).

• Nearly all are rarely (<1-10%) in the the top 30 activations. (However, nearly all features with <0.85 similarity are
sometimes in the top 30.)

• Manually looking at the activations, the features are often difficult to interpret.

10

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 15. A central claim of TSAEs is that unigram-based features are reduced. Compared to a similarly-trained non-tokenized SAE, we
see that significantly fewer TSAE features have significant max cosine similarity between the encoder weights and all unigram inputs.
Hence, TSAE features will not respond as often to individual tokens.

C.3. Feature complexity of TSAEs

Measuring complexity is difficult, since feature activations may have multiple causes which are not yet fully understood. That
said, a central motivation for TSAEs is that by excluding many ”simple” unigram-based features, features may potentially
represent more complex concepts (yet still be interpretable).

• First, we show that TSAE features are largely no longer unigram-based when compared to an identically trained
non-tokenized top-k SAE. To measure this, we determine the max cosine similarity between all unigram input vectors
and each feature’s encoder weights. We find that W enc is drastically less similar to unigram features in a tokenized
SAE (Figure 15).

• Second, we determine whether the additional features may be considered more ”complex”. To measure this, we
examine features only with a minimum max activation to ensure they are not dead and properly detect some signal.
Taking the top-activation prompt, we activate increasingly large suffix n-grams until the activation becomes (a) positive
and (b) within 90% of the maximum activation (to avoid outlier maximum indices). The former often indicates the
beginning of an increasing activation, while the latter indicates a strong encoder weight similarity to the input.

Plotting the percentage of features at each minimum n (Figure 16), we notice that indeed TSAEs have more features
activating at each n > 2 than a similarly-trained non-tokenized SAE. At least for this metric, we conclude that indeed
the loss of unigram features translated into additional features requiring longer context.

C.4. More on final-token subspaces

Here, we provide additional support that resid pre activations are strongly related to a token subspace. We find that regardless
of model complexity and layer – and even with Gemma 2B’s 256K vocabulary – >20% of the time a prompt’s final-token
(or a near-exact token) residual is closer than any other unigram residual (Figure 17).

D. Neuronpedia feature Study

11

Tokenized SAEs: Disentangling SAE Reconstructions

Figure 16. We measure feature complexity by finding the minimum suffix n-gram of each top-activating feature (>10) that results in a
positive activation (left) or 90%-max activation (right). We note that a larger percentage of features in non-tokenized SAEs are unigrams
(n = 1), while for n > 2 TSAEs generally have more ”complex” features by this metric. Further, we see that layer 5 (top) achieves
positive activations entirely with small n compared to layer 10 (bottom).

Figure 17. At each layer, we measure how many example prompts resid pre activations are nearest to their final-token unigram activation
than any other. Surprisingly, even in the final layer a large percentage are closest. When making a near-exact comparison, we compare
token strings after stripping whitespace and lowercasing. (Typically, these unigram activations are nearby in space.)

12

Tokenized SAEs: Disentangling SAE Reconstructions

Index Term Type
0 numbers Unigram collection
1 “Pier” Unigram
2 “weeks”/”months”/”years” Unigram collection
3 Token after sorry/apologize Bigram collection
4 separator/time Attention
5 “in” Unigram
6 Adjectives related to famousness Unigram collection + attention
7 recipe(s) Unigram
8 Causality (by a/due to) Bigrams + attention
9 “Ļ” Unigram

10 “Ļ” (again, look it up) Unigram
11 Not sure Attention
12 “told” Unigram
13 solved, addressed, resolved Unigram collection
14 “example” Unigram
15 Really not sure. . . nan
16 “With” Unigram
17 “Ste” Unigram
18 numerics in brackets (references) Bigram collection
19 “s” after number (20s) Bigram collection
20 Anglo + Alred + Pf Unigram collection

Table 3. A qualitative study into the first 21 features of Joseph Blooms GPT-2 resid pre SAE on layer 8. We show that more than half of
the features represent uninteresting reconstructions.

13

